Схемы и чертежи самодельных рекуператоров воздуха

Классификация

Для эффективности функционирования нужно учитывать общую площадь контакта теплообменника с циркулирующими потоками, их соотношение и объем. Самодельный рекуператор должен быть прост в изготовлении, но при этом выполняет свои функции. Поэтому перед разработкой чертежа следует ознакомиться с видами этих устройств.

  • Пластинчатый. Он состоит из нескольких кассет, в которых входные и выходные каналы чередуются, но не пересекаются. Преимущества – не потребляет электроэнергию, бесшумность. Возможно обмерзание из-за скапливания конденсата. Выход – установка специальных сборников воды. Эффективность зависит от материала пластин – полимеры, металл или целлюлоза.
  • Роторный. Основной элемент – ротор, который состоит из барабана со множеством ячеек. Он разделяет трубопровод на две части. Во время вращения ротора происходит смешивание масс, передача энергии. Преимущества – КПД до 85 %, возможность регулировки скорости вращения, нет конденсата. Недостатки – зависимость от электроэнергии, нужны фильтры.
  • Водяные. Тепло передается через жидкую среду. Преимущества – теплообменники могут находиться далеко друг от друга, не происходит смешивание потоков. Минус – сложность чертежа. Такие устройства применяются в производственных и коммерческих зданиях.

Основные характеристики – расход (м³/час), габариты и масса, эффективность теплообмена (60-90 %), способ монтажа (подвесной, встраиваемый). Дополнительные компоненты – звукоизоляционные материалы (роторные модели), теплоизоляция.

Первый этап – разработка чертежа и выбор материалов. Учитывается объем проходящего воздуха. Кратность воздухообмена – не менее 0,35 за 1 час или 30 м³/час на одного проживающего. В кухне этот показатель равен или более 75 м³/час. Эти значения зависят от производительности вентилятора и полезного сечения воздуховодов.

Рекуператор воздуха для частного дома своими руками

Комфортное загородное жильё невозможно себе представить без хорошей вентиляционной системы, поскольку именно она являются залогом здорового микроклимата. Тем не менее, многие с осторожностью и даже настороженностью относятся к вопросу реализации такой установки, опасаясь огромных счетов за электроэнергию. Если определенные сомнения «поселились» и в вашей голове, рекомендуем взглянуть на рекуператор для частного дома.

Речь идёт о небольшом агрегате, совмещаемом с приточно-вытяжной вентиляцией и исключающим перерасход электрической энергии в зимний период, когда воздуху требуется дополнительный подогрев. Существует несколько способ сокращения нежелательных расходов. Самый эффективный и доступный – сделать рекуператор воздуха своими руками.

Что это за устройство такое и как оно работает? Об этом и пойдёт речь в сегодняшней статье.

  • 1. Особенности и принцип работы
  • 2. Основные типы конструкций
  • 3. Устройство для воздухообмена своими руками
    • 3.1. Материалы и компоненты
  • 4. Чертежи устройства
    • 4.1. Расчёт аппарата

Схема рекуперации тепла в устройстве

Итак, что такое рекуперация тепла? – Рекуперация это процесс теплообмена, при котором холодный воздух с улицы нагревается за счёт выходящего потока с квартиры. Благодаря такой схеме организации установка с рекуперацией тепла экономит тепло в доме. В квартире за короткий промежуток времени и с минимальными затратами электричества формируется комфортный микроклимат.

На видео ниже представлена система рекуперации воздуха.

Экономическая целесообразность рекуперативного теплообменника зависит и от других факторов:

  • цен на энергоносители;
  • стоимости установки агрегата;
  • затрат, связанных с обслуживанием устройства;
  • продолжительности эксплуатации такой системы.

Обратите внимание! Рекуператор воздуха для квартиры – важный, но не единственный элемент, необходимый для эффективной вентиляции в жилом пространстве. Вентиляция с рекуперацией тепла – комплексная система, функционирующая исключительно при условии профессиональной «связки».

Рекуператор для дома

С понижением температуры окружающей среды эффективность агрегата падает. Как бы то ни было, а рекуператор для дома в этот период жизненно необходимо, поскольку существенная температурная разница «нагружает» систему отопления. Если за окном 0°C, то в жилое пространство подается воздушный поток, прогретый до +16°C. Бытовой рекуператор для квартиры с этой задачей справляется без каких-либо проблем.

Эффективность агрегата легко рассчитать, воспользовавшись следующей формулой:

Формула для подсчёта эффективности

Современные рекуператоры воздуха отличаются не только КПД, нюансами использования, но и конструкционно. Рассмотрим самые популярные решения и их особенности.

Специалисты акцентируют внимание на том, что системы вентиляции с рекуперацией тепла бывают нескольких типов:

  • пластинчатыми;
  • с отдельными теплоносителями;
  • роторные;
  • трубчатые.

Разновидности рекуператоров воздуха

Пластинчатый тип включает в себя конструкцию на основе алюминиевых листов. Такая установка рекуператора считается самой сбалансированной с точки зрения стоимости материалов и значения теплопроводности (КПД варьируется от 40 до 70%). Агрегат отличается простотой исполнения, ценовой доступностью, отсутствием подвижных элементов. Для установки не требуется специализированной подготовки. Монтаж без каких-либо сложностей выполняется дома, своими руками.

Роторные – достаточно популярные среди потребителей решения. В их конструкции предусмотрен вал вращения, питающийся от электросети, а также 2 канала под воздухообмен с противотоками. Как работает такой механизм? – Один из участков ротора прогревается воздухом, после чего он поворачивается и тепло перенаправляется к холодным массам, сосредоточенным в соседнем канале.

Несмотря на высокий КПД, установки имеют и ряд весомых недостатков:

  • внушительные массогабаритные показатели;
  • требовательность к регулярному техническому обслуживанию, ремонту;
  • проблематично воспроизвести рекуператор своими руками, восстановить его работоспособность;
  • смешивание воздушных масс;
  • зависимость от электрической энергии.

О видах рекуператоров можете посмотреть видео ниже (начиная с 8-30 минуты)

Обратите внимание! Вентиляционная установка с трубчатыми устройствами, а также отдельными теплоносителями практически не воспроизводится в домашних условиях, даже если под рукой есть все необходимые чертежи и схемы.

самодельный рекуператор воздуха для дома

Самой простой с точки зрения реализации и последующего оборудования считается система рекуперации тепла пластинчатого типа. Эта модель может похвастаться как очевидными «плюсами», так и досадными «минусами». Если говорить о достоинствах решения, то даже самодельный рекуператор воздуха для дома может обеспечить:

  • приличный КПД;
  • отсутствие «привязки» к электросети;
  • конструкционная надёжность и простота;
  • доступность функциональных элементов и материалов;
  • продолжительность эксплуатации.

Но перед тем как начать создавать рекуператор своими руками, следует уточнить и минусы данной модели. Главный из недостатков – образование оледенений при сильных морозах. На улице уровень влаги меньше, нежели в воздухе, который присутствует в комнате. Если не воздействовать на нее каким-либо образом она превращается в конденсат. При морозах высокий уровень влажности способствует формирования наледи.

На фото изображено как происходит воздухообмен

Существует несколько способов защиты устройства рекуператора от обмерзания. Это небольшие по размерам решения, отличающиеся эффективностью и способом реализации:

  • термическое воздействие на конструкцию за счёт чего наледь не задерживается внутри системы (КПД падает в среднем на 20%);
  • механический отвод воздушных масс от пластин, благодаря чему осуществляется принудительный отогрев льда;
  • дополнение системы вентиляции с рекуператором целлюлозными кассетами, поглощающими избыточную влагу. Они перенаправляются в жильё, при этом не только устраняется конденсат, но и достигается эффект увлажнителя.

Предлагаем посмотреть видео – Рекуператор воздуха для дома своими руками.

Специалисты сходятся во мнении – целлюлозные кассеты на сегодняшний день являются оптимальным решением. Они функционируют вне зависимости от погоды за окном, при этом установки не потребляют электричества, им не требуется канализационного отвода, сборника под конденсат.


Итак, что такое рекуперация тепла? – Рекуперация это процесс теплообмена, при котором холодный воздух с улицы нагревается за счёт выходящего потока с квартиры. Благодаря такой схеме организации установка с рекуперацией тепла экономит тепло в доме. В квартире за короткий промежуток времени и с минимальными затратами электричества формируется комфортный микроклимат.

Основные типы конструкций

Изначально устройства для рекуперации тепла в системах вентиляции представляли собой простейшую технику, выполненную в виде небольшого ящика с тонкой перегородкой. Сегодня появились многочисленные разновидности, которые отличаются своим принципом работы, наличием или отсутствием дополнительных нагревающих элементов, способом формирования воздушных потоков и рядом других характеристик.

Основные типы рекуператоров:

  • Роторные.
  • Пластинчатые.
  • Канальные.
  • Трубчатые.
  • С отдельным теплоносителем.

Устройства с пластинчатым теплообменником используют перекрестный ток потоков, которые, не смешиваясь, эффективно передают тепло, нагревая тем самым помещение. КПД у таких установок в зависимости от их размера может составлять 60−80%. Они отличаются минимальными потерями давления, удобны в подключении и использовании, имеют компактную конструкцию, что позволяет располагать его внутри стен дома.

Комбинированные рекуператоры могут иметь два пластинчатых теплообменника, где формируется перекрестный поток воздуха. К преимуществам оборудования этого типа относится высокий коэффициент полезного действия, удобство подключения и простота обслуживания. Единственный недостаток таких установок — это существенная потеря давления, что вынуждает использовать дополнительные вентиляторы и нагнетатели для воздушного потока.

Пластинчатые промышленные теплообменники рекуператоров противоточного типа отличаются простотой конструкции, они обеспечивают КПД на уровне 90%, позволяя предупредить охлаждение помещения и эффективно нагревая поступающий в дом воздух с улицы. К недостаткам оборудования противоточного пластинчатого типа относят сложную конструкцию, высокую стоимость, а также увеличенные габариты.

Противоточные трубчатые бытовые теплообменники обеспечивают максимально возможную эффективность, имеют КПД на уровне 95%. Используя такой рекуператор в системе вентиляции, необходимо дополнительно подключать нагнетатели воздуха, так как потери давления могут составить 40−50%. Также недостатком установок этого типа являются их увеличенные габариты и высокая стоимость оборудования.

Рекуперативные теплообменники роторного типа обладают показателем КПД на уровне 75−85%, они рассчитаны на одну квартиру и имеют небольшое сопротивление потоку. Предлагаются такие установки по доступным ценам, отличаются компактными габаритами, их монтаж и последующее обслуживание не представляет какой-либо особой сложности.

  • Длительный срок эксплуатации.
  • Простота используемых материалов и функциональных элементов.
  • Надежность конструкции.
  • Полная автономность и отсутствие привязки к электроснабжению.
  • Высокий КПД.

Правила выбора рекуператора

При рассмотрении модели для приобретения нужно оценить, насколько ее характеристики соответствуют данным помещения, в которое планируется установить прибор (высота, площадь, нужная кратность обмена). Для вычисления этих параметров целесообразно обратиться к профессионалу, так как эта процедура требует хорошего знания строительных норм и законов перемещения потоков воздуха, а заменять прибор при ошибке в расчетах обойдется дорого.

Важно определить, сколько воздуха в кубометрах должно поступать в комнату за 1 час. Согласно санитарным нормам, минимальное значение – 30 м2 на человека. В реальности этот показатель, связанный с производительностью прибора, будет больше за счет большого числа издержек: сопротивление воздуховода, величина обслуживаемого помещения и т.д.

Также внимание при выборе обращается на чувствительность и надежность блока автоматизации. Многие современные приборы оснащены теми или иными добавочными функциями: регуляция мощности вентиляционных приборов, напора потока воздуха (оценивается количество углекислого газа в вытяжке) и т.д.

Следует оценить степень шумогенерации прибора.

Некоторые устройства подвешиваются на стену, другие – устанавливаются на пол. Бывают горизонтально расположенные модели. Подходящее исполнение подбирается в зависимости от места монтажа и параметров системы.

Высота регулируется сообразно с суммарным количеством пластинок и их толщины при скреплении с реечными элементами. Диагональный параметр делают идентичным ширине теплообменного элемента.

Как сделать блок питания из электронного трансформатора

После всего сказанного в предыдущей статье (смотрите Как устроен электронный трансформатор?), кажется, что сделать импульсный блок питания из электронного трансформатора достаточно просто: поставить на выход выпрямительный мост, сглаживающий конденсатор, при необходимости стабилизатор напряжения и подключить нагрузку. Однако это не совсем так.

Читайте также:  Эффект Холла: в чём заключается явление, измерения датчиками, основанными на элементах Холла, формула расчетов

Дело в том, что преобразователь не запускается без нагрузки или нагрузка не достаточна: если к выходу выпрямителя подключить светодиод, разумеется, с ограничительным резистором, то удастся увидеть, лишь только одну вспышку светодиода при включении.

Чтобы увидеть еще одну вспышку, потребуется выключить и включить преобразователь в сеть. Чтобы вспышка превратилась в постоянное свечение надо подключить к выпрямителю дополнительную нагрузку, которая будет просто отбирать полезную мощность, превращая ее в тепло. Поэтому такая схема применяется в том случае, когда нагрузка постоянна, например, двигатель постоянного тока или электромагнит, управление которыми будет возможно только по первичной цепи.

Если для нагрузки необходимо напряжение более, чем 12В, которое выдают электронные трансформаторы потребуется перемотка выходного трансформатора, хотя есть и менее трудоемкий вариант.

Вариант изготовления импульсного блока питания без разборки электронного трансформатора

Схема такого блока питания показана на рисунке 1.

Рисунок 1. Двухполярный блок питания для усилителя

Блок питания изготовлен на основе электронного трансформатора мощностью 105Вт. Для изготовления такого блока питания понадобится изготовить несколько дополнительных элементов: сетевой фильтр, согласующий трансформатор Т1, выходной дроссель L2, выпрямительный мост VD1-VD4.

Блок питания в течение нескольких лет эксплуатируется с УНЧ мощностью 2х20Вт без нареканий. При номинальном напряжении сети 220В и токе нагрузки 0,1А выходное напряжение блока 2х25В, а при увеличении тока до 2А напряжение падает до 2х20В, что вполне достаточно для нормальной работы усилителя.

Согласующий трансформатор Т1 выполнен на кольце К30х18х7 из феррита марки М2000НМ. Первичная обмотка содержит 10 витков провода ПЭВ-2 диаметром 0,8мм, сложенного вдвое и свитого жгутом. Вторичная обмотка содержит 2х22 витка со средней точкой, тем же проводом, также сложенным вдвое. Чтобы обмотка получилась симметричной, мотать следует сразу в два провода – жгута. После обмотки для получения средней точки соединить начало одной обмотки с концом другой.

Также самостоятельно придется изготовить дроссель L2 для его изготовления понадобится такое же ферритовое кольцо, как и для трансформатора Т1. Обе обмотки намотаны проводом ПЭВ-2 диаметром 0,8мм и содержат по 10 витков.

Выпрямительный мост собран на диодах КД213, можно применить также КД2997 или импортные, важно лишь, чтобы диоды были рассчитаны на рабочую частоту не менее 100КГц. Если вместо них поставить, например, КД242, то они будут только греться, а требуемого напряжения получить от них не удастся. Диоды следует установить на радиатор площадью не менее 60 – 70см2, используя при этом изолирующие слюдяные прокладки.

Электролитические конденсаторы C4, C5 составлены из трех параллельно соединенных конденсаторов емкостью по 2200 микрофарад каждый. Обычно так делается во всех импульсных источниках питания для того, чтобы снизить общую индуктивность электролитических конденсаторов. Кроме этого полезно также параллельно им установить керамические конденсаторы емкостью 0.33 – 0,5мкФ, которые будут сглаживать высокочастотные колебания.

На входе блока питания полезно установить входной сетевой фильтр, хотя будет работать и без него. В качестве дросселя входного фильтра использован готовый дроссель ДФ50ГЦ, применявшийся в телевизорах 3УСЦТ.

Все узлы блока монтируют на плате из изоляционного материала навесным монтажом, используя для этого выводы деталей. Всю конструкцию следует поместить в экранирующий корпус из латуни или жести, предусмотрев в нем отверстия для охлаждения.

Правильно собранный источник питания в наладке не нуждается, начинает работать сразу. Хотя, прежде чем ставить блок в готовую конструкцию следует его проверить. Для этого на выход блока подключается нагрузка – резисторы сопротивлением 240Ом, мощностью не менее 5Вт. Включать блок без нагрузки не рекомендуется.

Еще один способ доработки электронного трансформатора

Случаются ситуации, что хочется применить подобный импульсный блок питания, но нагрузка оказывается очень «вредной». Потребление тока либо очень мало, либо меняется в широких пределах, и блок питания не запускается.

Подобная ситуация возникла, когда попытались в светильник или люстру со встроенными электронными трансформаторами, вместо галогенных ламп поставить светодиодные. Люстра просто отказалась с ними работать. Что же делать в таком случае, как заставить все это работать?

Чтобы разобраться с этим вопросом давайте, посмотрим на рисунок 2, на котором показана упрощенная схема электронного трансформатора.

Рисунок 2. Упрощенная схема электронного трансформатора

Обратим внимание на обмотку управляющего трансформатора Т1, подчеркнутую красной полосой. Эта обмотка обеспечивает обратную связь по току: если тока через нагрузку нет, или он просто мал, то трансформатор просто не заводится. Некоторые граждане, купившие это устройство, подключают к нему лампочку мощностью 2,5Вт, а потом несут обратно в магазин, мол, не работает.

И все же достаточно простым способом можно не только заставить работать устройство практически без нагрузки, да еще и сделать в нем защиту от короткого замыкания. Способ подобной доработки показан на рисунке 3.

Рисунок 3. Доработка электронного трансформатора. Упрощенная схема.

Для того, чтобы электронный трансформатор мог работать без нагрузки или с минимальной нагрузкой следует обратную связь по току заменить обратной связью по напряжению. Для этого следует убрать обмотку обратной связи по току (подчеркнутую красным на рисунке 2), а вместо нее запаять в плату проволочную перемычку, естественно, помимо ферритового кольца.

Далее на управляющий трансформатор Тр1, это тот, который на маленьком кольце, наматывается обмотка из 2 – 3 витков. А на выходной трансформатор один виток, и далее получившиеся дополнительные обмотки соединяется, как указано на схеме. Если преобразователь не заведется, то надо поменять фазировку одной из обмоток.

Резистор в цепи обратной связи подбирается в пределах 3 – 10Ом, мощностью не менее 1Вт. Он определяет глубину обратной связи, которая определяет ток, при котором произойдет срыв генерации. Собственно это и есть ток срабатывания защиты от КЗ. Чем больше сопротивление этого резистора, тем при меньшем токе нагрузки будет происходить срыв генерации, т.е. срабатывание защиты от КЗ.

Из всех приведенных доработок, эта, пожалуй, самая лучшая. Но это не помешает дополнить ее еще одним трансформатором как в схеме по рисунку 1.

Дело в том, что преобразователь не запускается без нагрузки или нагрузка не достаточна: если к выходу выпрямителя подключить светодиод, разумеется, с ограничительным резистором, то удастся увидеть, лишь только одну вспышку светодиода при включении.

Устройство электронного трансформатора

Привычные нам массивные трансформаторы не так давно стали заменяться на электронные, которые отличаются дешевизной и компактностью. Размеры электронного трансформатора настолько малы, что его встраивают в корпуса компактных люминесцентных ламп (КЛЛ).

Все такие трансформаторы сделаны по одной схеме, различия между ними минимальны. В основе схемы лежит симметричный автогенератор, иначе называемый мультивибратором.

Состоят они из диодного моста, транзисторов и двух трансформаторов: согласующего и силового. Это основные части схемы, но далеко не все. Кроме них, в схему входят различные резисторы, конденсаторы и диоды.

Принципиальная схема электронного трансформатора.

В этой схеме постоянный ток из диодного моста поступает на транзисторы автогенератора, которые накачивают энергию в силовой трансформатор. Номиналы и тип всех радиодеталей подобраны так, чтобы на выходе получалось строго определённое напряжение.

Если включить такой трансформатор без нагрузки, то автогенератор не запустится и напряжения на выходе не будет.


Найти и купить эти макетки можно как в ближайшем радиомагазине, так и на алиэкспрессе. В Китае они стоят в два раза дешевле, но доставки придётся подождать.

Схема работы

Генератором в этой схеме является диодный тиристор или динистор. Сетевое напряжение 220 В выпрямляется диодным выпрямителем. На входе питания присутствует ограничительный резистор. Он одновременно служит и предохранителем, и защитой от бросков сетевого напряжения при включении. Рабочую частоту динистора можно определить от номиналов R-С цепочки.

Таким образом можно увеличить рабочую частоту генератора всей схемы или уменьшить. Рабочая частота в электронных трансформаторах от 15 до 35 кГц, ее можно регулировать.

Трансформатор обратной связи намотан на маленьком колечке сердечника. В нем присутствуют три обмотки. Обмотка обратной связи состоит из одного витка. Две независимые обмотки задающих цепей. Это базовые обмотки транзисторов по три витка.

Это равноценные обмотки. Ограничительные резисторы предназначены для предотвращения ложных срабатываний транзисторов и одновременно ограничения тока. Транзисторы применяются высоковольтного типа, биполярные. Часто используют транзисторы MGE 13001-13009. Это зависит от мощности электронного трансформатора.

Транзисторы работают по противофазе. Образуется переменное напряжение на первичной обмотке трансформатора заданной частоты срабатывания динистора. На вторичной обмотке мы получаем нужное напряжение. В данном случае все трансформаторы рассчитаны на 12 вольт.

Устройство и принцип действия ЭТ

Конструктивно этот элемент схемы содержит в своем составе следующие узлы:

  • мультивибратор – задающий генератор импульсов на мощных транзисторах;
  • мост, собранный на высоковольтных катушках индуктивности;
  • малогабаритный трансформатор напряжения 220 12.

Функцию генератора в схеме электронного трансформатора выполняет либо диодный тиристор, либо транзисторы, включенные по схеме коммутаторов мощных импульсов (их еще называют ключевыми). При работе этого электронного узла частота генерации задается с помощью переменного резистора и накопительной емкости (ее допускается регулировать в диапазоне от 30 до 35 кГц). Катушки индуктивности включены по частично мостовой схеме и намотаны на небольшом по размеру кольцевом сердечнике.

В этом модуле предусмотрена петля обратной связи, позволяющая повысить стабильность работы задающего генератора.

В составе схемы применены высоковольтные биполярные транзисторы (обычно – типа MGE 13001-13009). Конкретная марка выбирается в зависимости от мощности электронного трансформатора, основное назначение которого – понижать уровень выходного сигнала до заданной величины в 12 (24) Вольта. Его основное достоинство – небольшие габариты и малый вес, что позволяет снизить соответствующие параметры всего устройства.

Принцип работы трансформатора состоит в формировании генератором импульсного напряжения нужной амплитуды, которое после преобразования в трансформаторе снижается до требуемого уровня. Для нормальной работы галогенных ламп мощных токовых импульсов амплитудой 12 или 24 Вольта бывает вполне достаточно.


В составе схемы применены высоковольтные биполярные транзисторы (обычно – типа MGE 13001-13009). Конкретная марка выбирается в зависимости от мощности электронного трансформатора, основное назначение которого – понижать уровень выходного сигнала до заданной величины в 12 (24) Вольта. Его основное достоинство – небольшие габариты и малый вес, что позволяет снизить соответствующие параметры всего устройства.

Электронный трансформатор: устройство, принцип работы и переделка в блок питания своими руками

Электронный трансформатор – регулировка мощности

Автор: Blaze, cornage@bk.ru
Опубликовано 30.10.2016
Создано при помощи КотоРед.

Электронный трансформатор – регулировка мощности.

В данной статье расскажу о давно набравшем популярность среди радиолюбителей устройстве, о котором упоминалось в радиожурналах ещё в 70-е годы. Уже в то время многие радиолюбители использовали для питания своих конструкций, таких как усилители мощности, автогенераторные импульсные источники питания (ИИП). Широкое распространение среди радиолюбителей получил автогенераторный полу-мостовой инвертор (Полумост). При использовании пропорционально-токового управления высоковольтными биполярными транзисторами, достигается хороший КПД преобразователя. В наше время такой автогенераторный полумост нашёл своё применение как замена крупногабаритного сетевого трансформатора. Данное устройство можно найти в любом хозяйственном или магазине электротоваров. Скрывается же наш простейший ИИП под названием –Электронный трансформатор.

Читайте также:  Цветомузыка своими руками (цифровые технологии)

Многие радиолюбителей конструируют на основе такого простейшего импульсника различные блоки питания, зарядные устройства, различные индукционные нагреватели, используют вместо привычного сетевого трансформатора для питания низковольтных паяльников и естественно для питания низковольтных ламп накаливания.

Чаще всего блок питания на основе такого устройства делается путём подключения к выходу электронного трансформатора двух-полупериодного или мостового выпрямителя на ультра-быстрых диодах, или диодах Шоттки.

После получения постоянного напряжения на выходе получившегося импульсного блока питания можно подключать различную нагрузку. Для запуска без нагрузки вводят ОС по напряжению, но не каждому хватает терпения и смекалки для настройки стабильной работы этой ОС.

Иногда может потребоваться регулировка выходного напряжения, например :

-регулировка оборотов микро-дрели

-регулировка температуры низковольтного паяльника

-регулировка яркости ламп накаливания (диммирование)

-регулировка тока заряда АКБ

Данные функции вполне реально осуществить на любом электронном трансформаторе (Feron, Taschibra и т.д.) и при любой мощности этого простого, дешёвого и компактного импульсника.

Давайте рассмотрим схему большинства таких электронных трансформаторов.

На транзисторах Q1 и Q2, конденсаторах C1, C2, также на силовом трансформаторе и коммутирующем T1, собран полу-мостовой автогенераторный инвертор. Выпрямленное сетевое напряжение поступает на делитель из конденсаторов C1,C2 и силовые транзисторы. Попеременно открываясь транзисторы поочерёдно проводят ток. Первичная обмотка силового трансформатора подключена к делителю из конденсаторов и к средней точке соединения транзисторов. При подаче запускающего импульса от цепи автозапуска, транзистор Q2 открывается и ток от конденсаторного делителя течёт через первичную обмотку силового трансформатора и транзистор Q2. После Q2закрывается, при этом открывается транзистор Q1, ток протекает от конденсаторного делителя, через первичную обмотку силового тр. И транзистор Q1. В конце каждого полупериода сети инвертор отключается и происходит перезапуск от дополнительной цепи.

На элементах R2,R3,D5,C3,D6 собрана цепь авто-запуска, которая в начале каждого полупериода сети запускает полу-мостовой автогенераторный ИИП. Конденсатор C3 заряжается до напряжения пробоя симметричного динистора D6, которое равно 32в. При достижении этого напряжения динистор DB3 открывается, C3 разряжается через динистор на базу Q2, происходит запуск схемы.

Изменяя время формирования запускающего импульса, можно добиться запуска инвертора как вначале, середине, так и к концу полу-периода . Тем самым становится возможной регулировка выходной мощности данного блока питания. Принцип регулировки здесь как и у симисторного регулятора мощности.(Фазовый метод регулировки).

В таком виде схема запуска не пригодна для корректной регулировки, её нужно немного изменить. Однако мне попался электронный трансформатор с более подходящей для регулировки схемой запуска. Потребовалось заменить резистор 470к на 100к и последовательно с ним припаял переменный резистор на 680к, конденсатор 10нф заменил на 68нф 250в.

Наткнулся случайно на данную схему, заработало всё с первого раза.

Жирным шрифтом указал используемые в своёт эл.трансе транзисторы и номинал используемого потенциометра.

Первый запуск как всегда делаем через лампу накаливания на 60вт и с мелкой нагрузкой. Без нагрузки страховочная лампа светиться недолжна.

Регулировка получилась плавной, галогенные лампочки можно регулировать от тусклого свечения нити, до максимума накала. Также переделка позволяет сделать простое зарядное устройство для автомобильного аккумулятора, с добавлением всего лишь выпрямителя на ультра-быстрых диодах или на сборке Шоттки.

Также есть видео, в котором переделываю данный электронный трансформатор под регулировку мощности + демонстрация данного устройства в работе (https://youtu.be/J7LbjTdBvAw).

Надеюсь многим придётся по душе данная переделка, которая совмещает в себе лёгкость и компактность электронного трансформатора,его мощьность и функцию симисторного регулятора мощности на борту.

На транзисторах Q1 и Q2, конденсаторах C1, C2, также на силовом трансформаторе и коммутирующем T1, собран полу-мостовой автогенераторный инвертор. Выпрямленное сетевое напряжение поступает на делитель из конденсаторов C1,C2 и силовые транзисторы. Попеременно открываясь транзисторы поочерёдно проводят ток. Первичная обмотка силового трансформатора подключена к делителю из конденсаторов и к средней точке соединения транзисторов. При подаче запускающего импульса от цепи автозапуска, транзистор Q2 открывается и ток от конденсаторного делителя течёт через первичную обмотку силового трансформатора и транзистор Q2. После Q2закрывается, при этом открывается транзистор Q1, ток протекает от конденсаторного делителя, через первичную обмотку силового тр. И транзистор Q1. В конце каждого полупериода сети инвертор отключается и происходит перезапуск от дополнительной цепи.

Технические условия изготовления

Переделать электронный трансформатор в импульсный блок питания не так просто, как это оказывается на практике. Помимо трансформатора потребуется установка выпрямительного моста на выходе и сглаживающего конденсатора. В случае необходимости используется стабилизатор напряжения и подключение нагрузки.

Необходимо учитывать, что запуск преобразователя невозможен без нагрузки или при недостаточной нагрузке. Это легко проверить с помощью светодиода, подключаемого к выходу выпрямляющего устройства с использованием ограничительного резистора. В итоге все дело закончится лишь одной вспышкой светодиодного источника света в момент включения.

Для того чтобы появилась еще одна вспышка, преобразователь необходимо сначала выключить, а затем снова включить в сеть. Добиться постоянного свечения вместо вспышек возможно путем подключения выпрямителя к дополнительной нагрузке, которая производит отбор полезной мощности с выделением тепла. Данная схема может использоваться только при постоянной нагрузке, управляемой через первичную цепь.

Если же нагрузка требует более 12 вольт, выдаваемых электронным трансформатором, необходимо перемотать выходной трансформатор. Существуют и другой вариант решения этой проблемы, более эффективный и менее затратный.

Работа электронного трансформатора при минимальной нагрузке или вообще без нее, обеспечивается путем замены обратной связи по току, обратной связью по напряжению. С этой целью обмотка обратной связи по току убирается, а взамен ее в плату впаивается перемычка из проволоки, не затрагивая ферритовое кольцо.

Трансформатор

На первичную обмотку трансформатора W1 (иногда её называют сетевой, так как она подключается к сети 220 вольт) поступает входное напряжение. При подаче на первичную обмотку переменное напряжение, в нашем случае — сетевое напряжение 220 В, по магнитопроводу будет протекать переменное электромагнитное поле. Если на магнитопроводе находится вторая обмотка, электромагнитное поле будет проходить и через вторичную обмотку W2. При этом во вторичной обмотки будет наводится электродвижущая сила, и на вторичной обмотке появится выходное напряжение. Со вторичной обмотки трансформатора выходит переменное, обычно пониженное напряжение для питания устройств напряжением 3,3 В, 5 В, 9 В, 12 В и 15 В и тд. Но бывают и повышающие трансформаторы, у них на входе напряжение ниже чем на выходе. Но мы будем рассматривать понижающие трансформаторы.

Мы возьмем трансформатор на выходе вторичной обмотки которой будет выходить 12 вольт.

Можно уже и таким блоком питания пользоваться, но только если для подключения лампы накаливания на 12 Вольт, ведь на выходе у нас переменное напряжение.

Второй полупериод проходит также через обмотку трансформатора, но в обратном направлении. С обмотки трансформатора ток протекает теперь через диод VD3. VD1 и VD2 заперты, и далее ток через токоограничивающий резистор R1 на светодиод VD5, далее ток протекает через диод VD4 и уходит на трансформатор.

Электронный трансформатор: устройство, принцип работы и переделка в блок питания своими руками

  • Усилители мощности
  • Светодиоды
  • Блоки питания
  • Начинающим
  • Радиопередатчики
  • Разное
  • Ремонт
  • Шокеры
  • Компьютер
  • Микроконтроллеры
  • Разработки
  • Обзоры и тесты
  • Обратная связь
  • Форум
    • Усилители мощности
    • Шокеры
    • Качеры, катушки Тэсла
    • Блоки питания
    • Светодиоды
    • Начинающим
    • Жучки
    • Микроконтроллеры
    • Устройства на ARDUINO
    • Программирование
    • Радиоприемники
    • Датчики и ИМ
    • Вопросы и ответы
  • Online расчёты
  • Умный дом
  • Видео
  • RSS
  • Приём статей
    • Усилители мощности
    • Светодиоды
    • Блоки питания
    • Начинающим
    • Радиопередатчики
    • Разное
    • Ремонт
    • Шокеры
    • Компьютер
    • Микроконтроллеры
    • Разработки
    • Обзоры и тесты
    • Обратная связь
  • Форум
    • Усилители мощности
    • Шокеры
    • Качеры, катушки Тэсла
    • Блоки питания
    • Светодиоды
    • Начинающим
    • Жучки
    • Микроконтроллеры
    • Устройства на ARDUINO
    • Программирование
    • Радиоприемники
    • Датчики и ИМ
    • Вопросы и ответы
  • Online расчёты
  • Умный дом
  • Видео
  • RSS
  • Приём статей
  • Силовая обмотка трансформатора содержит 8 витков, намотка делалась 5-ю жилами провода 0,7мм, таким образом, имеем в первичке провод с общим сечением 3,5мм.

    Электронный трансформатор: устройство, принцип работы и переделка в блок питания своими руками

    Для сборки самодельных мощных источников питания можно использовать электронные трансформаторы, применяемые для питания галогенных ламп. Электронный трансформатор представляет собой полумостовой автогенераторный импульсный преобразователь напряжения. Стоят такие импульсные трансформаторы достаточно дёшево, и после небольшой доработки их можно использовать для питания своих самодельных устройств требующих мощного источника питания.
    При небольших размерах они обеспечивают большую выходную мощность, но у них есть определённые недостатки, такие как: нежелание запуститься без нагрузки, выход из строя при коротком замыкании, и очень сильный уровень помех.

    Классическая схема электронного трансформатора на примере Taschibra , но это может быть и любой другой электронный трансформатор, к примеру ZORN New, приведена ниже.

    Напряжение сети поступает на диодный мост. Выпрямленное напряжение питает полумостовой преобразователь на транзисторах. В диагональ моста, образованного этими транзисторами и конденсаторами С1, С2, включена обмотка I импульсного трансформатора Т2. Запуск преобразователя обеспечивается цепью, состоящей из резисторов R3, конденсатора С3, диода D5 и диака D6. Трансформатор обратной связи Т1 имеет три обмотки – обмотка обратной связи по току, которая включена последовательно с первичной обмоткой силового трансформатора (то есть чем больше ток нагрузки – тем больше ток базы ключей, поэтому трансформатор не запускается без нагрузки, или при малой нагрузке напряжение меньше 12В, да и при коротком замыкании базовый ток ключей растет и они выходят из строя, а часто еще и резисторы в базовых цепях), и две обмотки по 3 витка, питающие базовые цепи транзисторов. Выходное напряжение электронного трансформатора представляет собой прямоугольные импульсы частотой 40 кГц, промодулированные частотой 100 Гц.

    Внешний вид платы ZORN New 150 и обратная сторона
    Первая проблема отсутствия запуска без нагрузки или при малой нагрузке устраняется довольно просто – меняем ОС (обратную связь) по току на ОС по напряжению. Удаляем обмотку ОС по току на коммутирующем трансформаторе и ставим вместо нее перемычку. Далее наматываем 1-2 витка на силовом трансформаторе и 1 на коммутирующем, используем резистор в ОС от 3-10 Ом мощностью не меньше 3 – 5 ватт, чем выше сопротивление – тем меньше ток защиты от КЗ. Этим токоограничивающим резистором устанавливается частота преобразования. При увеличении тока нагрузки частота становится больше. Если преобразователь не запустится необходимо изменить направление намотки.

    Подключаем на выходе выпрямительного моста конденсатор, для сглаживания пульсаций выпрямленного напряжения. Емкость выбирается из расчета 1 – 1,5 мкФ на 1Вт. Рабочее напряжение конденсатора должно быть не менее 400В. При включении в сеть выпрямительного моста с конденсатором возникает бросок тока, поэтому нужно в разрыв одного из сетевых проводов включить терморезистор NTC или резистор 4,7 Ом 5Вт.

    Если необходимо другое выходное напряжение, перематываем вторичную обмотку силового трансформатора. Самое простое, это посчитать количество витков вторичной обмотки на силовом трансформаторе, к примеру в электронном трансформаторе ZORN New 150 – 8 витков вторичной обмотки при выходном напряжении 11,8 вольт, соответственно получаем 1,47 вольт/виток. Необходимо также учитывать что, под нагрузкой напряжение упадет, примерно на 2 вольта. Диаметр провода выбирается исходя из тока нагрузки. Таким образом можно получить широкий спектр выходных напряжений от единиц до нескольких сотен вольт. Также можно намотать несколько обмоток для получения нескольких напряжений с одного блока питания, естественно при этом нужно учитывать суммарную мощность электронного трансформатора.

    Читайте также:  Установка систем сигнализации. Установка автосигнализации своими руками: когда сложное - легко

    Для выпрямления переменного напряжения на выходе электронного трансформатора устанавливаем диодный мост. Электронные трансформаторы плохо работают с емкостной нагрузкой или не запускаются вообще. Для нормальной работы необходим плавный запуск устройства. Обеспечению плавного запуска способствует дроссель L1. Совместно с конденсатором он также выполняет функцию фильтрации выпрямленного напряжения. Емкость выходного конденсатора желательно подобрать из расчёта не менее 10 мкф на 1 ватт потребляемой нагрузки. Параллельно желательно поставить конденсатор емкостью 0.1 мкф.

    Схема электронного трансформатора с переделками.

    В нём применяются транзисторы BLD139D. Даташит на него здесь

    Динистор DB3 Даташит И немного о динисторе.

    DB3 – популярный зарубежный двусторонний динистор – диак. Выполнен в стеклянном цилиндрическом корпусе с гибкими проволочными выводами.

    Наибольшее распространение прибор DB3 нашел в схемах сетевых регуляторов мощности нагрузки (диммеров).

    Динистор DB3 является двунаправленным диодом (триггер-диод), который специально создан для управления симистором или тиристором. В основном своем состоянии динистор DB3 не проводит через себя ток (не считая незначительный ток утечки) до тех пор, пока к нему не будет приложено напряжение пробоя.

    В этот момент динистор переходит в режим лавинного пробоя и у него проявляется свойство отрицательного сопротивления. В результате этого на динисторе DB3 происходит падение напряжения в районе 5 вольт, и он начинает пропускать через себя ток, достаточный для открытия симистора или тиристора.

    Поскольку DB3 является симметричным динистором (оба его вывода являются анодами), то нет абсолютно ни какой разницы, как его подключать.

    Характеристики:

    • (I откр — 0.2 А), В 5 – это напряжение при открытом состоянии;
    • Среднее максимально допустимое значение при открытом состоянии: А 0.3;
    • В открытом состоянии импульсный ток составляет А 2;
    • Максимальное напряжение (во время закрытого состояния): В 32;
    • Ток в закрытом состоянии: мкА — 10;
    • Максимальное импульсное не отпирающее напряжение составляет В 5.
    • Диапазон рабочих температур: C -40…70

    В этот момент динистор переходит в режим лавинного пробоя и у него проявляется свойство отрицательного сопротивления. В результате этого на динисторе DB3 происходит падение напряжения в районе 5 вольт, и он начинает пропускать через себя ток, достаточный для открытия симистора или тиристора.

    ПЕРЕДЕЛКА ЭЛЕКТРОННОГО ТРАНСФОРМАТОРА

    Все больше и больше радиолюбители переходят на питание своих кострукций импульсыми источниками питания. На прилавках магазинов сейчас размещено очень много дешевых электронных трансформаторов (дальше просто ЭТ).

    При небольших размерах они обеспечивают большую выходную мощность, да и малые размеры хорошо — это на тот случай, если упадет на ногу:) Радиолюбители пытаются использовать эти ЭТ, но у них есть определённые недостатки, такие как: нежелание запуститься без нарузки, выход из строя при КЗ, и сильный уровень помех. В этой статье хочу поделиться с вами переделками электронных трансформаторов, чтобы избавитса от вышеуказанных недостатков. Вот типовая схема ЭТ:

    Проблема заключаетса в том, что в трансформаторе применена цепь обратной (дальше ОС) связи по току, то есть чем больше ток нарузки — тем больше ток базы ключей, поэтому трансформатор не запускается без нагрузки, или при малой нарузке напряжение меньше 12В, да и при КЗ базовый ток ключей растет и они выходят из строя, а часто еще и резисторы в базовых цепях. Устраняется всё это довольно просто — меняем ОС по току на ОС по напряжению, вот схема переделки. Красным отмечено то, что нужно изменить:

    Итак, удаляем обмотку связи на коммутирующем трансформаторе и ставим вместо нее перемычку.

    Потом наматываем 1-2 витка на силовом трансформаторе и 1 на коммутирующем, используем резистор в ОС от 3-10 Ом мощностью не меньше 1 ватта, чем выше сопротивление — тем меньше ток защиты от КЗ.

    Если вас пугает нагрев резистора, вместо него можно использовать лампочку от карманного фонарика (2,5-6,3В). Но при этом ток срабатывания защиты будет очень мал, так как сопротивление горячей нити лампы довольно большое.

    Трансформатор теперь спокойно запускается без нагрузки, и есть защита от КЗ.

    При замыкании выхода ток на вторичке падает, соотвественно падает ток и на обмотке ОС — ключи запираются и срывается генерация, только во время КЗ очень сильно греются ключи, так как динистор пытаетса запустить схему, а ведь на ней КЗ и процес повторяетса. Поэтому данный электронный трансформатор может выдержать режим замыкания не болле 10 секунд. Вот видео работы защиты от КЗ в переделанном устройстве:

    Сорри за качество, снимал на мобильник. Вот еще одно фото переделки ЭТ:

    Но помещать фильтрующий конденсатор в корпус ЭТ не советую, я делал так на свой страх и риск, так как температура внутри и так немаленькая, да и места мало, может вздуть конденсатор и возможно вы услышите БА-БАХ:) Но не факт, пока что все работает отлично, время покажет… Позже мною были переделаны два трансформатора на 60 и 105 Вт, вторичные обмотки были перемотаны под свои нужды, вот фото, как разделить сердечник Ш-образного трансформатора (в блоке питания 105 Вт).

    Также можно передлать импульсный блок питания малой мощности под большую, заменив при этом ключи, диоды сетевого моста, конденсаторы полумоста и конечно же трансформатор на феррите.

    Вот немного фоток — переделан ЭТ на 60 Вт под 180Вт, транзисторы заменены на MJE 13009, конденсаторы 470 nF и трансформатор намотан на двух сложенных кольцах К32*20*6.

    Первичка 82 витка в две жилы 0,4 мм. Вторичка по вашим требованиям.

    И еще, чтоб не сжечь ЭТ при экспериментах или любой другой внештатной ситуации — лучше подключить его последовательно с ламой накаливания аналогичной мощности. В случае КЗ или другой поломки — загоритса лампа, а вы сбережёте радиодетали. С вами был AVG (Марьян).

    Проблема заключаетса в том, что в трансформаторе применена цепь обратной (дальше ОС) связи по току, то есть чем больше ток нарузки — тем больше ток базы ключей, поэтому трансформатор не запускается без нагрузки, или при малой нарузке напряжение меньше 12В, да и при КЗ базовый ток ключей растет и они выходят из строя, а часто еще и резисторы в базовых цепях. Устраняется всё это довольно просто — меняем ОС по току на ОС по напряжению, вот схема переделки. Красным отмечено то, что нужно изменить:

    ↑ Переделываем? Конечно!

    Тем более, что это совсем не сложно.

    Выпаиваем трансформатор. Разогреваем его для удобства разборки, чтобы перемотать вторичную обмотку для получения желаемых выходных параметров так, как показано на этом фото или с помощью любых других технологий.

    В данном случае трансформатор выпаян лишь для того, чтобы поинтересоваться его моточными данными (кстати: Ш-образный магнитопровод с круглым керном, стандартных для компьютерных БП габаритов с 90 витками первичной обмотки, намотанными в 3 слоя проводом диаметром 0,65мм и 7-ю витками вторичной обмотки с впятеро сложенным проводом диаметром приблизительно 1,1мм; все это без малейшей межслойной и межобмоточной изоляции – только лак) и освободить место для другого трансформатора.

    Для экспериментов мне было проще использовать кольцевые магнитопроводы. Занимают меньше места на плате, что дает (при необходимости) возможность использования дополнительных компонентов в объеме корпуса. В данном случае использовалась пара ферритовых колец с внешним, внутренним диаметрами и высотой, соответственно 32Х20Х6мм, сложенных вдвое (без склеивания) – Н2000-НМ1. 90 витков первички (диаметр провода – 0,65мм) и 2Х12 (1,2мм) витков вторички с необходимой межобмоточной изоляцией.

    Обмотка связи содержит 1 виток монтажного провода диаметром 0,35мм. Все обмотки наматываются в порядке, соответствующем нумерации обмоток. Изоляция самого магнитопровода – обязательна. В данном случае магнитопровод обмотан двумя слоями изоленты, надежно, кстати, фиксируя сложенные кольца.

    Перед установкой трансформатора на плату ЭТ, выпаиваем токовую обмотку коммутирующего трансформатора и используем ее в качестве перемычки, запаяв туда же, но уже не пропуская через окно кольца трансформатора.

    Устанавливаем намотанный трансформатор Tr2 на плату, запаяв выводы в соответствии со схемой на рис 4. и пропускаем провод обмотки III в окно кольца коммутирующего трансформатора. Используя жесткость провода, образуем подобие геометрически замкнутой окружности и виток обратной связи готов. В разрыв монтажного провода, образующего обмотки III обоих (коммутирующего и силового) трансформаторов, припаиваем достаточно мощный резистор (>1Вт) сопротивлением 3-10 Ом.

    На схеме в рис 4 штатные диоды ЭТ не используются. Их следует удалить, как, впрочем, и резистор R1 в целях повышения КПД блока в целом. Но можно и пренебречь несколькими процентами КПД и оставить перечисленные детали на плате. По крайней мере, в момент проведения экспериментов с ЭТ, эти детали оставались на плате. Резисторы, установленные базовых цепях транзисторов следует оставить – они выполняют функции ограничения тока базы при запуске преобразователя, облегчая его работу на емкостную нагрузку.

    Транзисторы непременно следует установить на радиаторы через изолирующие теплопроводящие прокладки (повзаимствованные, например, у неисправного компьютерного БП), предотвратив, тем самым их случайный мгновенный разогрев и обеспечив некоторую собственную безопасность в случае прикосновения к радиатору во время работы устройства.

    Кстати, электрокартон, используемый в ЭТ для изоляции транзисторов и платы от корпуса, не является теплопроводным. Поэтому при “упаковке” готовой схемы БП в штатный корпус, между транзисторами и корпусом следует установить именно такие прокладки. Лишь в этом случае будет обеспечен хоть какой-то теплоотвод. При использовании преобразователя с мощностями свыше 100Вт на корпус устройства необходимо установить дополнительный радиатор. Но это, так, – на будущее.

    А пока, закончив монтаж схемы, выполним еще один пункт безопасности, включив его вход последовательно через лампу накаливания мощностью 150-200 Вт. Лампа, в случае нештатной ситуации (КЗ, например) ограничит ток через конструкцию до безопасной величины и в худшем случае создаст дополнительное освещение рабочего пространства.

    В лучшем случае, при некотрой наблюдательности лампой можно пользоваться, как индикатором, например, – сквозного тока. Так, слабое (или несколько более интенсивное) свечение нити лампы при ненагруженном или слабо нагруженном преобразователе, будет свидетельствовать о наличии сквозного тока. Подтверждением может послужить температура ключевых элементов – разогрев в режиме сквозного тока будет довольно быстрым.
    При работе исправного преобразователя видимое на фоне дневного света свечение нити 200-ваттной лампы проявится лишь на пороге 20-35 Вт.

    Итак, все готово для первого пуска переделанной схемы “Tashibra”. Включаем для начала – без нагрузки, но не забываем о предварительно подключенном вольтметре на выход преобразователя и осциллографе. При правильно сфазированных обмотках обратной связи, преобразователь должен запуститься без проблем.

    Добавить комментарий