Эффект Холла: в чём заключается явление, измерения датчиками, основанными на элементах Холла, формула расчетов

Изоляция

Одно из главных преимуществ датчиков Холла заключается в электрической изоляции, которую в контексте проектирования схем и систем называют гальванической развязкой. Принцип гальванической развязки используется всякий раз, когда проект требует, чтобы две схемы связывались таким способом, который предотвращает любую возможность протекания между ними электрического тока. Простой пример, когда цифровой сигнал передается через оптоизолятор, который преобразует импульсы напряжения в импульсы света и таким образом передает данные оптическим способом, а не электрическим. Одной из основных причин для реализации гальванической развязки является предотвращение проблем, связанных с земляными контурами:

Основные принципы проектирования схем предполагают, что взаимосвязанные компоненты совместно используют общую точку земли, на которой предполагается 0 В. В реальной жизни, однако, «земля» состоит из проводников, имеющих ненулевое сопротивление, и эти проводники служат в качестве обратного пути протекания тока от схемы назад к источнику питания. Закон Ома напоминает нам, что ток и сопротивление дадут напряжение, и это падение напряжения в обратном пути означает, что «земля» в одной части схемы не точно такая же по потенциалу, как «земля» в другой части схемы. Эта разница в потенциалах земли может привести к проблемам, начиная от незначительных до катастрофических.

Для предотвращения протекания постоянного тока между двумя схемами используется гальваническая развязка, позволяющая успешно общаться схемам с различными потенциалами земли. Это особенно актуально для измерения токов: низковольтный датчик и обрабатывающая цепь могут понадобиться для контроля больших, изменяющихся в больших пределах токов, например, в цепи привода двигателя. Эти большие, быстро изменяющиеся токи приведут к значительным колебаниям напряжения в цепи обратного пути протекания тока. Датчик Холла позволяет системе контролировать ток привода и защитить схему высокоточного датчика от этих вредных колебаний земли.

Основные принципы проектирования схем предполагают, что взаимосвязанные компоненты совместно используют общую точку земли, на которой предполагается 0 В. В реальной жизни, однако, «земля» состоит из проводников, имеющих ненулевое сопротивление, и эти проводники служат в качестве обратного пути протекания тока от схемы назад к источнику питания. Закон Ома напоминает нам, что ток и сопротивление дадут напряжение, и это падение напряжения в обратном пути означает, что «земля» в одной части схемы не точно такая же по потенциалу, как «земля» в другой части схемы. Эта разница в потенциалах земли может привести к проблемам, начиная от незначительных до катастрофических.

Датчики Холла

Аналоговые изделия функционируют на основе базовых принципов явления. По изменению потенциала определяют силу тока. Цифровые модели срабатывают при определенном уровне индукции. Единица на выходе сигнализирует о наличии магнитного поля.

Основное преимущество датчиков, созданных на основе данного эффекта, – изолированность цепей (измерения и токопроводящей). Кроме отмеченной выше хорошей защищенности от внешней среды, такое конструкторское решение обеспечивает отсутствие обратного влияния на основную электрическую схему. Подразумевается возможность оперативного изменения места измерения. Дополнительный плюс – минимальная мощность потребления.

Эффект Холла: в чём заключается явление, измерения датчиками, основанными на элементах Холла, формула расчетов

Одним из проявлений магнитной составляющей силы Лоренца в веществе служит эффект, обнаруженный в 1879 г. американским физиком Э.Г. Холлом (1855–1938). Эффект состоит в возникновении на боковых гранях проводника с током, помещенного в поперечное магнитное поле, разности потенциалов, пропорциональной величине тока I и индукции магнитного поля В.

Рассмотрим эффект, обусловленный действием лоренцевой силы на свободные заряды в проводнике. Представим себе проводник с током I в виде плоской ленты, расположенной в магнитном поле с индукцией , направленной от нас (рис. 2.19).

В случае изображенном на рис. 2.19, а, верхняя часть проводника будет заряжаться отрицательно, в случае 2.19, б – положительно.

Это позволяет экспериментально определить знак носителя заряда в проводнике.

При равной концентрации носителей заряда обоих знаков возникает холловская разность потенциалов, если различна подвижность, т.е. дрейфовая скорость носителей заряда.

Подсчитаем величину холловской разности потенциалов (Uх).

Обозначим: Ex – напряженность электрического поля, обусловленного ЭДС Холла, h – толщина ленты проводника.

,(2.10.1)

Перераспределение зарядов прекратится, когда сила qEx уравновесит лоренцеву силу, т.е.

или

Плотность тока , отсюда . Тогда .

Подставим Ex в (2.10.1) и найдем Ux:

,(2.10.2)

где – коэффициент Холла.

Исследования ЭДС Холла привели к удивительным выводам. Металлы могут обладать проводимостью р-типа (Zn, Cd – у них дырки более подвижные, чем электроны). Это металлы с чуть перекрывающимися знаками, т.е. полуметаллы.

Из формулы (2.10.2) можно найти число носителей заряда:

,(2.10.3)

Итак, измерение холловской разности потенциалов позволяет определить:

· знак заряда и тип носителей;

На рисунке 2.20 показана установка для исследования магнитного поля длинного соленоида с помощью датчика Холла.

Из формулы (2.10.2) можно найти число носителей заряда:

Квантовый

Эта разновидность ЭХ определяется появлением квантовых характеристик сопротивления при существенном снижении температуры образца. Экспериментально подтверждена зависимость проводимости от силовых параметров магнитного поля при сохранении постоянства концентрации носителей зарядов.

В этом состоянии Fл = Fэ, поэтому значение правых частей формул также будет равным: q*v*B = q * E. Следовательно E = v*B.

Холловская мобильности

Холловская мобильность для электронов представлена как «μ n», а для отверстий — как «μ p». Математическое выражение для мобильности Холла:

μ n — проводимость за счет электронов

μ p — проводимость благодаря отверстиям


Он представлен RH. Формула для коэффициента Холла: RH равно 1 / (qn). Коэффициент Холла (R H) положителен, если число отверстий положительного заряда больше, чем число электронов отрицательного заряда. Аналогично, коэффициент Холла (RH) отрицателен, если число отрицательных зарядовых электронов больше, чем число отверстий положительного заряда.

Сущность эффекта Холла

Эффект Холла является следствием существования силы Лоренца. На движущиеся в магнитном поле заряды действует сила Лоренца. Под ее действием электрон отклоняется от первоначального направления движения к одной из граней. В результате одна из граней проводника заряжается отрицательно, следовательно, другая становится положительно заряженной. Внутри металла появляется поперечное электрическое поле ($overrightarrow$).

Сущность этого явления заключена в том, что электропроводимость проводника во внешнем магнитном поле является тензорной величиной (не скаляром). Напряженность поперечного электрического поля, которое называют холловским, добавляется к напряженности электрического поля, которое вызывает ток в отсутствии магнитного поля. В результате $overrightarrow$ поля образует с плотностью тока угол, который называют углом Холла (направление вектора $overrightarrow$ и направление вектора $overrightarrow $ не совпадают). Связь напряжённости и плотности тока имеет вид:

Задай вопрос специалистам и получи
ответ уже через 15 минут!

где $_$ — тензор электропроводимости. Эффект Холла относят к гальваномагнитным эффектам (эффектам, которые происходят в веществе под действие магнитного поля).

Эмпирически получено, что поперечная разность потенциалов (U), возникающая в эффекте Холла в слабых магнитных полях, может быть рассчитана как:

где $R=frac<1>$- постоянная Холла, $q_e$ — заряд электрона. Разность потенциалов измеряется, остальные величины в формуле (1) известны. Так находится концентрация зарядов. По знаку разности потенциалов определяют знак носителей тока.

В равновесии $overrightarrow=0$ тогда можно записать, что:

Эффект Холла

Контактные, термоэлектрические и магнитные явления в полупроводниках

3.3.1 Контактные явления в полупроводниках

Если поместить полупроводник, через который протекает электрический или тепловой поток в магнитное поле, то в нём возникают гальваномагнитные и термомагнитные явления.

3.3.2 Гальваномагнитные эффекты в полупроводниках. Эффект Холла

Гальваномагнитными эффектами в полупроводниках называются такие явления, которые возникают при одновременном действии на полупроводник электрического и магнитного полей.

Все гальваномагнитные эффекты делятся на поперечные ( действие эл. маг. Полей обнаруживается на гранях полупроводника, параллельных электрическому и магнитному полям) и продольные (проявляются вдоль образца).

К поперечным относится эффект Холла, к продольным, например, изменение сопротивления образца в магнитном поле.

Если полупроводник, вдоль которого течет электрический ток, поместить в магнитное поле, перпендикулярное направлению тока, то в полупроводнике возникает поперечное электрическое поле, перпендикулярное току и магнитному полю. Это явление получило название эффект Холла, а возникающая ЭДС – ЭДС Холла.

Читайте также:  Тюль может быть кружевом, шелком и любым легким материалом.

Эффект Холла лежит в основе принципа действия целого ряда полупроводниковых приборов, нашедших техническое применение.

Эффект Холла заключается в возникновении ЭДС Холла на гранях полупроводникового бруска с током, помещенного в магнитное поле. Величина ЭДС Холла определяется векторным произведением тока I и магнитной индукции B. На рисунке изображен случай дырочного полупроводника. Знак ЭДС Холла легко определить по правилу левой руки. Отогнув в сторону большой палец, найдем направление смещения основных носителей заряда для данного типа полупроводника. Рассчитывается ЭДС Холла так

где Rx – постоянная Холла R=-A/(nq) – для n-полупроводника, R=B/(pq) – для p-полупроводника,( n и p концентрации электронов и дырок); A и B – коэффициенты, значения которых от 0.5 до 2.0 для различных образцов. В сильных полях или для вырожденных полупроводников A=B=1.0. Для монокристаллических образцов с совершенной структурой A=B=3/8.

Наиболее часто датчики Холла изготовляют на основе селенида и теллурида ртути (HgTe,HgSe), антимонида индия (InSb) и других полупроводниковых материалов в виде тонких пленок или пластинок. С их помощью возможно измерение магнитной индукции или напряженнности магнитного поля, силы тока и мощности, а при подведении к контактам переменных напряжений – и преобразование сигналов. По измерению ЭДС Холла можно определить знак носителей заряда, рассчитать их концентрацию и подвижность.

3.3.3 Термоэлектрические явления в полупроводниках. Эффекты Зеебека, Пельтье, Томпсона

К важнейшим термоэлектрическим явлениям в полупроводниках относятся эффекты Зеебека, Пельтье и Томпсона. Сущность явления Зеебека состоит в том, что в электрической цепи, состоящей из последовательно соединенных разнородных полупроводников или полупроводника и металла, возникает ЭДС, если концами этих материалов существует разность температур.

На рисунке представлена цепь из двух спаев. Один конец спая нагрет до температуры Т1, а другой до температуры Т2, пусть Т2 > Т1. При этом в цепи обнаруживается электродвижущая сила – термоЭДС, которая в этом случае равна

Где a – коэффициент термоЭДС, который определяется материалами двух ветвей.

а

Т1 Т2

– + b

Если поместить полупроводник, через который протекает электрический или тепловой поток в магнитное поле, то в нём возникают гальваномагнитные и термомагнитные явления.

От Лоренца к Холлу

Для лучшего понимания физических процессов следует вспомнить базовые определения силы Лоренца. Они описывают воздействие на движущийся заряд магнитного поля. При перпендикулярном расположении силовых линий и вектора скорости электрон будет отклоняться вертикально вверх.

На второй части рисунка показано, каким образом сила Лоренца воздействует на поток электронов. Их движение в определенном направлении обеспечивает подключенный источник постоянного тока. В соответствующих точках плоского проводника несложно измерить разницу потенциалов (Uх).

К сведению. Перемещение электронов противоположно движению тока, отмеченного на картинке стрелками.

Для определения полярности потенциала пользуются известным правилом правой руки. Разместив ладонь в соответствии с направлением движения электронов, положением большого пальца определяют направление воздействия силы Лоренца. В рассматриваемом примере она перемещает отрицательные заряды на пластине вниз. Соответствующий знак «-» отмечен на картинке.


На второй части рисунка показано, каким образом сила Лоренца воздействует на поток электронов. Их движение в определенном направлении обеспечивает подключенный источник постоянного тока. В соответствующих точках плоского проводника несложно измерить разницу потенциалов (Uх).

Спиновый

В 2003–2004 годах было изучено поведение электронов с антипараллельными спинами в проводниках, изолированных от каких-либо магнитных полей. Теоретической базой исследования послужили теории Владимира Переля, выдвинутые в далёком 1971 году. Они были доказаны на практике, когда удалось зафиксировать отклонения данных групп электронов к противоположным граням проводника. Движение заряженных частиц напоминает первый вид эффекта — аномальный.

Теперь электрическое поле E можно описать с помощью выражения:

Эффект Холла и датчики на его основе

Эффект Холла был открыт в 1879 г. американским ученым Эдвином Гербертом Холлом. Его сущность состоит в следующем (см. рисунок). Если через проводящую пластинку пропускать ток, а перпендикулярно пластинке направить магнитное поле, то в направлении поперечном току (и направлению магнитного поля) на пластинке появится напряжение: Uh = (RhHlsinw)/d, где Rh – коэффициент Холла, зависящий от материала проводника; Н – напряженность магнитного поля; I – ток в проводнике; w – угол между направлением тока и вектором индукции магнитного поля (если w = 90°, sinw = 1); d – толщина материала.

Благодаря тому, что выходной эффект определяется произведением двух величин (Н и I), датчики Холла имеют весьма широкое применение. В таблице приведены коэффициенты Холла для различных металлов и сплавов. Обозначения: Т – температура; В – магнитный поток; R h – коэффициент Холла в единицах м3 /Кл.

Бесконтактные клавишные переключатели на основе эффекта Холла применялись за рубежом довольно широко уже с начала 70-х годов. Достоинства этого переключателя – высокая надежность и долговечность, малые габариты, а недостатки – постоянное потребление энергии и сравнительно высокая стоимость.

Принцип действия генератора Холл а

Датчик Холла имеет щелевую конструкцию. С одной стороны щели расположен полупроводник, по которому при включенном зажигании протекает ток, а с другой стороны – постоянный магнит.

В магнитном поле на движущиеся электроны воздействует сила. Вектор силы перпендикулярен направлению, как магнитной так и электрической составляющих поля.

Если внести в магнитное поле с индукцией В полупроводниковую пластинку (например, из арсенида индия или антимонида индия), через которую протекает электрический ток, то на боковых сторонах, перпендикулярно направлению тока, возникает разность потенциалов. Напряжение Холла (ЭДС Холла) пропорционально току и магнитной индукции.

Между пластинкой и магнитом имеется зазор. В зазоре датчика находится стальной экран. Когда в зазоре нет экрана, то на пластинку полупроводника действует магнитное поле и с нее снимается разность потенциалов. Если же в зазоре находится экран, то магнитные силовые линии замыкаются через экран и на пластинку не действует, в этом случае разность потенциалов на пластинке не возникает.

Интегральная микросхема преобразует разность потенциалов, создающуюся на пластинке, в отрицательные импульсы напряжения определенной величины на выходе датчика. Когда экран находится в зазоре датчика, то на его выходе будет напряжение, если же в зазоре датчика экрана нет, то напряжение на выходе датчика близкое к нулю.

Дробный квантовый эффект Холла

Об эффекте Холла написано много, этот эффект интенсивно используется в технике, но ученые продолжают его исследовать. В 1980 г. немецкий физик Клаус фон Клитцунг изучал работу эффекта Холла при сверхнизких температурах. В тонкой пластинке полупроводника фон Клитцунг плавно изменял напряженность магнитного поля и обнаружил, что сопротивление Холла изменяется не плавно, а скачками. Величина скачка не зависила от свойств материала, а являлась комбинацией фундаментальных физических констант, деленной на постоянное число. Получалось, что законы квантовой механики каким-то образом изменяли природу эффекта Холла. Это явление было названо интегральным квантовым эффектом Холла. За это открытие фон Клитцунг получил Нобелевскую премию по физике в 1985 г.

Два года спустя после открытия фон Клитцунга в лаборатории компании Bell Telephone (той самой, в которой был открыт транзистор) сотрудники Стормер и Тсуи изучали квантовый эффект Холла, используя исключительно чистый образец арсенида галлия большого размера, изготовленный в этой же лаборатории. Образец имел настолько высокую степень чистоты, что электроны проходили его из конца в конец, не встречая препятствий. Эксперимент Стормера и Тсуи проходил при гораздо более низкой температуре (почти абсолютный нуль) и с более мощными магнитными полями, чем в эксперименте фон Клитцунга (в миллион раз больше, чем магнитное поле Земли).

К своему большому удивлению Стормер и Тсуи обнаружили скачок в сопротивлении Холла в три раза больший, чем у фон Клитцунга. Затем они обнаружили еще большие скачки. Получалась та же комбинация физических постоянных, но деленная не на целое, а на дробное число. Заряд электрона у физиков считается константой, не делимой на части. А в этом эксперименте как бы участвовали частицы с дробными зарядами. Эффект был назван дробным квантовым эффектом Холла.

Читайте также:  Тосканский стиль (35 фото): интерьер дома, дизайн кухни, спальни и других комнат

Год спустя после этого открытия сотрудник лаборатории Ла-флин дал теоретическое объяснение эффекта. Он заявил, что комбинация сверхнизкой температуры и мощного магнитного поля заставляет электроны образовывать несжимаемую квантовую жидкость. Но рисунке с помощью компьютерной графики показан поток электронов (шары), протыкающих плоскость. Неровности плоскости представляют распределение заряда одного из электронов в присутствии магнитного поля и заряда других электронов. Если электрон добавляется к квантовой жидкости, то образуется некоторое количество квазичастиц с дробным зарядом (на рисунке это показано как набор стрелок у каждого электрона).
В 1998 г. Хорст Стормер, Даниэль Тсуи и Роберт Лафлин были удостоены Нобелевской премии по физике. В настоящее время Х.Стормер – профессор физики Колумбийского университета, Д.Тсуи – профессор Принстонского университета, Р.Лафлин – профессор Стенфордского университета.

Если внести в магнитное поле с индукцией В полупроводниковую пластинку (например, из арсенида индия или антимонида индия), через которую протекает электрический ток, то на боковых сторонах, перпендикулярно направлению тока, возникает разность потенциалов. Напряжение Холла (ЭДС Холла) пропорционально току и магнитной индукции.

Микропроцессорное управление двигателем

Тем не менее, прерыватель, представляющий собой достаточно сложное механическое устройство с подвижными деталями, все еще не давал покоя конструкторам и изобретателям, стремящимся упростить и повысить надежность системы зажигания.

Аномальный ЭХ

Бывают случаи, когда ЭХ обнаруживается в пластине без пропускания через нее магнитного потока. Это может происходить только тогда, когда нарушается симметрия по отношению к обращению времени в системе. В частности, аномальный ЭХ способен проявляться в намагниченных материалах.

В магнитных потоках с еще большей силой индукции обнаруживается дробный квантовый ЭХ. Он взаимосвязан с перестроением внутренней структуры двумерной электронной жидкости.

Эффект Холла

Американский ученый Эдвин Холл в 1879 году обнаружил, что в помещенном в магнитное поле проводнике возникает разность потенциалов в направлении, перпендикулярном току I и вектору магнитной индукции В. Данный эффект возник вследствие воздействия силы Лоренца на заряды, движущиеся в этом проводнике.

На рисунке ниже изображена тонкая пластина, пронизываемая магнитным полем с индукцией В, направленным перпендикулярно чертежу, причем линии индукции направлены от зрителя и уходят за чертеж (показаны крестиком):

За направление тока I принимают направление движения положительных зарядов, для которых направление вектора скорости V и тока I совпадают (рисунок а)). У зарядов отрицательных векторы тока и скорости направлены в противоположные стороны (рисунок б)). Применив правило левой руки легко убедиться в том, что сила Лоренца в обоих случаях будет направлена к верхней (на рисунке) грани пластины.

Эффект Холла наблюдается у полупроводников и металлов. У полупроводников n – типа, а также у металлов, где носителями зарядов являются электроны, на верхней части пластины будет накапливаться избыточный отрицательный заряд, а нижняя грань будет испытывать недостаток электронов и зарядится положительно, как показано на рисунке ниже (а)):

Результатом этого становится возникновение разницы потенциалов между верхней и нижней гранями проводника Uн.

У полупроводников p – типа, носителями заряда которых являются положительно заряженные дырки, верхняя грань (рисунок выше) приобретает в магнитном поле положительный заряд, а нижняя – отрицательный (рисунок б)). При исследовании распределения зарядов можно определить характер проводимости (электронный или дырочный) полупроводника. Также в процессе изучения эффекта Холла было обнаружено, что некоторые металлы обладают смешанной электронно – дырочной проводимостью. У таких металлов, из — за того, что дырки обладают большей подвижностью, распределение зарядов между верхней и нижней гранями будет такое же, как и у полупроводников p – типа.

Поскольку вектор тока I перпендикулярен скорости V перемещения зарядов и магнитному полю В, то выражение для сила Лоренца будет иметь вид:

Заряды, которые скапливаются на нижней и верхней гранях пластины, создают электрическое поле напряженностью Е, которое будет воздействовать на заряды с силой:

Когда устанавливается стационарное распределение зарядов в поперечном сечении проводника, эти две силы уравновешивают друг друга, то есть Fл = Fэл, поэтому:

Где: q – заряд частицы, n – количество частиц на единицу объема, V – скорость их движения.

Подставим это выражение в формулу (1):

Разность потенциалов между нижней и верхней гранью с расстоянием между ними d, будет равно:

Коэффициент пропорциональности в этой формуле:

Так же его еще называют постоянной Холла. Уравнение (3) примет вид:

Можно сделать вывод, что разность потенциалов между гранями проводника прямо пропорциональна толщине проводящей пластины d, магнитной индукции В и плотности тока j.

Для любопытных видео о датчиках Холла:



Подставим это выражение в формулу (1):

Эффект Холла.

Эффект Холла относится к группе гальваномагнитных явлений и заключается в том, что под действием магнитного поля, перпендикулярного к электрическому току, электроны в материале отклоняются перпендикулярно как направлению электрического тока, так и магнитного поля. С помощью эффекта Холла стало возможным понять суть процессов проводимости в полупроводниках и провести грань между полупроводниками и другими типами плохо проводящих материалов. Это обусловлено тем, что измерение ЭДС (разности потенциалов) Холла, возникающей в материале перпендикулярно направлению электрического тока и внешнего магнитного поля, дает возможность непосредственно определить концентрацию и знак носителей заряда. Последнее позволяет определить принадлежность материала к тому или иному типу полупроводников (p или n–типа). Измерения эффекта Холла дают возможность отделить случай ионной проводимости от случая электронной проводимости. Наличие эффекта Холла в проводниках и полупроводниках свидетельствует об электронном характере проводимости. С помощью эффекта Холла возможно получить данные и о подвижности носителей заряда (так называемая «холловская» подвижность). Таким образом, можно считать, что эффект Холла – один из наиболее эффективных методов исследования электрических свойств полупроводниковых материалов.

Этот эффект был открыт Е.Холлом в 1879 г.. Сущность явления заключается в следующем. Если металлическую или полупроводниковую пластину, по которой проходит ток, поместить в магнитное поле, направленное перпендикулярно линиям тока (рис.5), то в ней возникает разность потенциалов в направлении перпендикулярном току и магнитному полю.

В основе эффекта лежит взаимодействие между электрическими зарядами и магнитными полями. Любая заряженная частица, движущаяся в магнитном поле, испытывает действие силы Лоренца, направление которой перпендикулярно направлению движения частицы и направлению магнитного поля. Величина этой силы прямо пропорциональна величине заряда q, скорости частицыv и индукции магнитного поля:

(0.1)

Для металлов и для полупроводников n-типа q = -|e|, где |e|— модуль заряда электрона.

Модуль векторного произведения:

(0.2)

Рис. 5. Схема возникновения эффекта Холла в полупроводнике n-типа.

словимся, что магнитное поле направлено строго перпендикулярно вектору скорости частиц. Т. е. угол α между векторами и равен 90 0 , а sin(90 0 )=1 Тогда:

(1)

Под действием силы Лоренца электроны отклоняются к ближней боковой грани пластины рис. 5 и заряжают ее отрицательно. На противоположной грани остается нескомпенсированный положительный заряд ионов кристаллической решетки. В результате этого в пластине возникает поперечное электрическое поле , направленное от дальней боковой грани к ближней. Обозначим напряженность образовавшегося электрического поля через . Сила , действующая со стороны электрического поля на заряд, направлена в сторону, противоположную направлению силы Лоренца (рис. 5). Возникшая вследствие этого поперечная разность потенциалов Ux называется ЭДС Холла.

Разделение зарядов в образце продолжается до тех пор, пока силы магнитного и электрического полей не уравновесят друг друга, т. е.:

(2)

(3)

Считаем поле , образовавшееся в пластинке однородным. Тогда находим:

→ (4)

где d – толщина пластинки в направлении поля Ex (рис. 5).

С учетом выражения (3) получаем, что:

(5)

Сила тока, протекающего через единицу поверхности образца, т. е. плотность тока, равна:

(5.1)

А модуль выражения (5.1) найдем как:

(5.2)

где n – число носителей тока в единице объема образца (концентрация носителей тока).

С другой стороны, модуль вектора плотности тока определяется как, где S – площадь поперечного сечения пластины, перпендикулярная направлению. Тогда:

Читайте также:  Что такое пластиковая арматура?

(5.3)

где а— ширина пластины в направлении векторарис. 5.

Сопоставляя формулы (5.2) и (5.3), находим:

(5.4)

Выражая из (5.4) скорость электронов v, находим:

(6)

Подставив (6) в (5), получим:

(7)

Обозначим гдеRх – постоянная или коэффициент Холла. (Условно считают, что знак постоянной Холла совпадает со знаком заряда носителей тока. У электронных полупроводников постояннаяRотрицательна, у дырочных- положительна, гдеp– концентрация дырок).

Тогда выражение (7) записывается в виде:

(8)

Таким образом, ЭДС Холла зависит от величины проходящего тока, индукции магнитного поля, ширины пластины и концентрации носителей заряда. Зависимость от концентрации говорит о том, что в металлах ЭДС Холла по сравнению с полупроводниками намного меньше, и поэтому использование эффекта Холла началось только с применением полупроводников.

При выводе формулы для U мы полагали, что все носители заряда имеют одинаковую скорость. Если учитывать распределение носителей заряда по скоростям, то необходимо ввести числовой множительA,отличный от единицы:

где А– постоянная, зависящая от механизма рассеяния носителей заряда:А=1,93 … 0,99. Практически для большинства металлов можно считать A≈1.

При рассеянии электронов на тепловых колебаниях решетки:

,(8.1)

Наглядная иллюстрация эффекта Холла в полупроводниках c n-типом и p-типом проводимости приведена на рис. 6 a), б). По сравнению с рисунком 5 здесь пластина повернута на угол к наблюдателю вокруг оси.

Рис. 6. Эффект Холла в полупроводниках с n-проводимостью а) и p-проводимостью б)

С учетом выражения (3) получаем, что:

Влияние электромагнитных полей на здоровье человека и способы защиты от их вредного воздействия

Природа подарила человечеству чистый, прозрачный воздух, водоемы и естественный электромагнитный фон, излучаемый как планетой и окружающим космосом, так и животным и растительным миром. Однако, с развитием цивилизации, естественный геомагнитный фон усилился техногенным воздействием. Человек при помощи радиотехнических и радиоэлектронных приборов создал невидимую электромагнитную паутину, в которой мы все находимся. Мощные линии электропередачи высокого и сверхвысокого напряжения, многочисленные радио- и телепередающие станции, космические станции спутниковой связи вызывают электромагнитное загрязнение среды обитания человека. Воздействие ЭМП происходит дома, на работе и даже во время отдыха на природе. Электробытовые приборы, предназначенные облегчить нашу жизнь, стены домов и квартир, пронизанные электрическими проводами, распространяют ЭМП не безвредные для здоровья человека.

Биологическое действие ЭМП.Данные как отечественных, так и зарубежных исследователей свидетельствуют о высокой биологической активности ЭМП во всех частотных диапазонах. ЭМП высокой частоты приводят к нагреву тканей организма.

Многочисленные исследования в области биологического действия ЭМП определили наиболее чувствительные системы организма: нервную, иммунную, эндокринную, половую. Биологический эффект ЭМП в условиях многолетнего воздействия накапливается, вследствие чего возможно развитие отдаленных последствий дегенеративных процессов в центральной нервной системе, новообразований, гормональных заболеваний. К электромагнитным полям особенно чувствительны дети, беременные, люди с нарушениями в сердечно-сосудистой, гормональной, нервной, иммунной системах.

Влияние на нервную систему.Нарушается передача нервных импульсов. В результате появляются вегетативные дисфункции(неврастенический и астенический синдром), жалобы на слабость, раздражительность, быструю утомляемость, нарушение сна нарушается высшая нервная деятельность – ослабление памяти, склонность к развитию стрессовых реакций.

Влияние на сердечно-сосудистую систему.Нарушения деятельности этой системы проявляются, как правило, лабильностью пульса и артериального давления, склонностью к гипотонии, болями в области сердца. В крови отмечается умеренным снижением количества лейкоцитов и эритроцитов.

Влияние на иммунную и эндокринную системы.Установлено, что при воздействии ЭМП нарушается иммуногенез, чаще в сторону угнетения. У животных организмов, облученных ЭМП, отягощается течение инфекционного процесса. Влияние электромагнитных полей высокой интенсивности проявляется в угнетающем эффекте на Т-систему клеточного иммунитета. Под действием ЭМП увеличивается выработка адреналина, активизируется свертываемость крови, снижается активность гипофиза.

Влияние на половую систему. Многие ученые относят электромагнитные поля к тератогенным факторам. Наиболее уязвимыми периодами являются обычно ранние стадии развития зародыша. Наличие контакта женщины с электромагнитным излучением может привести к преждевременным родам, повлиять на развитие плода и, наконец, увеличить риск врожденных уродств.

Основные источники ЭМП и способы защиты от их воздействия.

Источниками электромагнитных полей являются атмосферное электричество, геомагнитные поля, промышленные установки, радиолокация, радионавигация, средства теле- и радиовещания, бытовые приборы, внутренние электрические сети в домах. Излучаемое ими поле разнится в зависимости от конкретных моделей – чем выше мощность прибора, тем больше создаваемое им магнитное поле.

Достаточно актуальным является вопрос биологической безопасности сотовой связи. Однозначного ответа на него ученые до сих пор не дали. Можно отметить лишь одно: за все время существования сотовой связи ни один человек не получил явного ущерба здоровью из-за ее использования. Исходя из технологических требований построения системы сотовой связи, основная энергия излучения (более 90%) сосредоточена в довольно узком луче, который всегда направлен в сторону и выше прилегающих построек. В режиме разговора излучение сотового телефона гораздо выше, чем в режиме ожидания. Поле, возникающее вокруг его антенны, усиливается в метро, во время разговора в автомобиле, усиливает его действие металлическая оправа очков.

Персональные компьютеры давно превратились в одну из самых важных вещей в доме среднестатистического жителя любой из развитых стран мира. Очень часто приходится пользоваться компьютером по месту работы. По статистике, около 30% населения большую часть рабочего времени проводят за компьютером, кроме того, значительная часть пользователей имеет контакт с ПК дома. В связи с этим у многих возникает вопрос о вредных факторах, влияющих на человека при работе на компьютере и способах защиты от них. Считается, что наиболее опасно излучение монитора, являющегося источником электромагнитного, рентгеновского, инфракрасного, ультрафиолетового излучений. Однако, опасными в этом плане могут оказаться только довольно старые, выпущенные 5-7 лет назад мониторы. Они являются источниками ЭМИ сверхнизкой частоты, но не больше, чем другие электроприборы. Уровень рентгеновского излучения монитора намного меньше, чем естественный радиационный фон. А уровни инфракрасного и ультрафиолетового излучений монитора ничтожны по сравнению с электрическими лампами. Но даже в этом случае можно отдельно приобрести защитный экран. Современные жидкокристаллические (плоские) экраны и переносные компьютеры-ноутбуки вообще не излучают – у них другой принцип действия.

Для исключения или уменьшения уровней воздействия ЭМП на организм человека важно выполнять ряд простых рекомендаций:

– исключение длительного пребывания в местах с повышенным уровнем магнитного поля промышленной частоты

– грамотное расположение мебели для отдыха, обеспечивающие расстояние 2-3 метра до электрораспределительных щитов, силовых кабелей, электроприборов

– при приобретении бытовой техники обращайте внимание на информацию о соответствии прибора требованиям санитарных норм

– использование приборов меньшей мощности

– не пользоваться сотовым телефоном без необходимости, не разговаривать непрерывно более 3-4 минут

– использовать в автомобиле комплект hands-free, размещая его антенну в геометрическом центре крыши.

Люди уже не могут отказаться от электростанций, железных дорог, самолетов, автомобилей, от других завоеваний цивилизации, даже если идет речь о собственном здоровье. Задача состоит в том, чтобы минимизировать вредные техногенные воздействия на окружающую среду и ознакомить общество с конкретной экологической опасностью и выработать механизм защиты.

Природа подарила человечеству чистый, прозрачный воздух, водоемы и естественный электромагнитный фон, излучаемый как планетой и окружающим космосом, так и животным и растительным миром. Однако, с развитием цивилизации, естественный геомагнитный фон усилился техногенным воздействием. Человек при помощи радиотехнических и радиоэлектронных приборов создал невидимую электромагнитную паутину, в которой мы все находимся. Мощные линии электропередачи высокого и сверхвысокого напряжения, многочисленные радио- и телепередающие станции, космические станции спутниковой связи вызывают электромагнитное загрязнение среды обитания человека. Воздействие ЭМП происходит дома, на работе и даже во время отдыха на природе. Электробытовые приборы, предназначенные облегчить нашу жизнь, стены домов и квартир, пронизанные электрическими проводами, распространяют ЭМП не безвредные для здоровья человека.

Добавить комментарий